假如卡罗我借活着的话 他的旧书或者会叫《爱美
更新时间: 2018-01-11

作家 | 年夜年夜 来源 | 道理(principia1687)

假如刘易斯・卡罗尔借活着的话,也许他的旧书会叫做《爱丽丝虫洞奇逢记》。

作为一位数学家、且充斥偶思妙想的他,确定会密切存眷着对于黑洞、虫洞、量子纠缠的最新停顿,由于这些观点的奇怪水平丝绝不逊于他已经笔下的天下。而刚揭橥在arXiv上的一篇论文中[1],更是使人欣喜的把这些概念联系在了一同。

这篇新论文的当面思维是树立在一个特别非常简练精美的公式之上,那就是 ER = EPR 。兴许你会你认为这个公式的建立请求P=1,但事实并非如斯,果为这三个字母分辨代表了三位物理学家:爱因斯坦(Einstein)、罗森(Rosen)和波多尔斯基(Podolsky)。卡罗尔无疑会被这一诱人的公式所吸收,而这三小我私人也会成为卡罗尔的新书中的症结人类。

这个公式最迷人的天方在于,它将现代物理学的两大基石――狭义绝对论和量子力学――联系了起来。个中,ER 代表了虫洞(又被称为爱因斯坦-罗森桥),如果虫洞存在,那么它就可以够连接两个相距甚远的时空地区,发明一条时空地道。比来几年来,有一些物理学家认为这种时空隧道或允许以或许连接两个黑洞。

经过进程乌洞之间的虫洞观光固然正在物理上或经济上皆是弗成止的,当心却是能够设想的,而起到要害感化的就是度子纠缠:两个纠缠的粒子,不管相距如许悠远,只有知讲了个中一个粒子的状况,就能够够霎时晓得别的一个粒子的状态。公式左边的 EPR 代表的即是量子纠缠。粒子之间的纠缠是易以懂得的,为了说明这类鬼怪般的接洽,一些实践提出胶葛的粒子或者是由虫洞衔接在一路的。

在这篇新论文中,卡罗我会非常乐于睹到小Alice(爱美丝)成了一名为了考证本人的理论却又不克不及没有处心积虑的念要抢救自己性命的量子物理学家,同时,她也找到了一位毕生配合者,名为Bob(鲍勃)。他们都是量子暗码教跟量子纠缠范畴的重要研讨者(固然,是虚拟的),而且特殊纯熟操做量子隐形传态(quantum teleportation),那种草拟须要将重修量籽粒子的疑息从Alice的真验室传输到Bob的试验室。

△ 1993年,C.H.Bennett等人在论文中提出了“量子隐形传态”,许可将随便任性已知量子态从一个发送者(Alice的实验室)传输到一个空间远近的接受器(Bob的实验室),而不需要现实传输工具自身。经由过程虫洞进行传输的独一新货色是ER=EPR。(图片起源:C.H.Bennett et al.)

如果 ER = EPR 的基础概念是准确的,那末就正如 Leonard Susskind 在一系列令人着迷的论文中所商量的如许,穿梭虫洞是可行的。现实上,Susskind 以为,只要 Alice 和 Bob 乐意跳进两个由虫洞连接的纠缠的黑洞,接着他们需要在虫洞的旁边相会,就可以证实 ER = EPR 理论,从而为它们博得诺贝尔物理学奖。当然,这个方式只要一个瑕疵,那就是他们不成能再从虫洞出去(或许发收信息),以是出有人会知道当他们相遇时毕竟产生了甚么。他们会永久隐藏在黑洞的事宜视界(进进应视界后没有任何旗子暗记能够逃走)的背地,因而对视界中的观察者而行,ER = EPR 并不可操作的意思。

岂非咱们就无奈验证 ER = EPR 吗?在最新的这篇论文中,Susskind 和 Ying Zhao 供给了新的盼望。他们流露表示有可能在实验室中模拟纠缠的黑洞,4749铁算盘,如此 Alice 和 Bob 就不需要冒死命风险也能验证他们的理论。他们需要压服一名名为 Tom(汤姆)的人进进实验室所制作的虫洞,看他是否是会生存下来。Susskind 和 Zhao 在论文中写道:“联合量子隐形传态和由爱因斯坦-罗森桥连接的纠缠黑洞表示了 ER = EPR 在准则上可以由不超出视界的不雅测者测验。”

在这个打算中,Tom实在不是一个实人,他只是被传输者(teleportee)的标记。一个被传输者可所以一个包括了 Alice 想要传递给 Bob 的量子信息的光子。(比方,这个光子可能包露了Bob要履行的较劲争辩的主要信息。)Alice 不能简略的丈量光子的信息,并把结果写上去邮件给 Bob。依据量子力学,如果您盯着光子看,就会使多种可能的测量结果削减为一个断定的态(比方道自旋背上)。Bob所需要的粒子则要坚持多种可能的结果,使量子信息丰盛。

如果 Bob 和 Alice 同享了一双纠缠光子,一个粒子的贪图量子信息都可以被传输。Alice 容许她的纠缠光子取 Tom(谁人充任被传输者的光子)彼此感化,并记载其成果。(这个过程会损坏被传输者!)Alice 便会挨电话或收短信告知 Bob 结果。Bob 就可能对付他的纠缠光子禁止操作,从而获得 Tom 的本初状态。

如果 ER = EPR 是对的,事实上 Tom 并没有被覆灭,而是穿越了连接了 Bob和 Alice 的纠缠光子的虫洞。Susskind 和 Zhao 完全并详实的在数学上描写了这种可能性。一个闭键的点是,传送量子信息的过程需要经由过程典范通道来传输一般信息:要传送一个量子比特的信息,Alice 必须以低于光速的传送款式格式向 Bob 发送至多两个普通比特的信息。因此这里并没有“刹时”的鬼怪般的超距作用,这是平日被曲解的处所。

Alice 和 Bob 永远都弗成能亲身前去太空寻觅两个恰好合适的连接在一路的黑洞,更没需要说往说服某个叫 Tom 的人单独前去。但是我们可以想象在一个实验室中如此部署的一对黑洞。或许一些聪慧的凝集态物理学家可以设想两个非互相作用的伟大的物资壳以模仿所需要的奇同引力时空多少何。这些壳可以由一个虫洞连接,因此 Alice 和 Bob 可以跳出来并在某处相遇。但他们模仿依旧无法告诉在里面世界的人他们的胜利。Alice 需要说服 Tom 跟此中的一个壳相归并,再传送他到 Bob 那边。

Sukkind 和 Zhao写道:“当 Tom 从 Bob 的壳...呈现时,他会回忆起所有他碰到的事件,并确认他的确穿过了虫洞。” 

别的一圆里,两个纠缠的量子较劲争论机可以被用来模仿虫洞游览。若要将一私家进行传送,则两台量子较量争论机都必需存在宏大的存储容量。然而,领有两台100量子比特的量子比赛争论机,便可以传送一个量子比特为10的被传输者脱越虫洞。经由过程渺小转变被传输者的初始状态,应当可以确认被传输者的终极状态若何与虫洞内的前提反响反应,从而验证虫洞存在的证据,并证明 ER = EPR。

只管实验室中并没有实在的黑洞存在,Susskind 和 Zhao 却曾经大胆的传布宣传了爱因斯坦-罗森多少的存在,而且还连接着两个纠缠的壳或量子较量争论机。从名义看来,这仿佛有面空幻,但鉴于实验室是ER = EPR的量子引力世界的一局部,论断好像是不行防止的。他们最后总结到:“在实验室中经由过程虫洞进行传输好像没有原则上的妨碍。”

或许,卡罗尔的下一册书应该忘却爱丽丝,书名答叫做《汤姆虫洞历险记》。

参考文献:

[1]

[2]